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Abstract-The problem of a rectangular hole in an infinite elastic and isotropic plate. submitted to
tension at infinity. is solved for any side ratio of the hole. It is assumed that the rectangular hole
has rounded-off corners. the radii of curvature of which remain many times smaller than the short
sides of the rectangles. The Musk.helishvili complex stress function iP(:). sufficient to determine the
first stress invariant needed for the solution is determined in a closed form by applying the conformal
mapping method of the outside of a rectangle to the inside of a unit circle. The stress and strain
distributions along the boundary of the hole. as well as inside a limited region in front of the short
sides of the rectangle are accurately determined. It is proved that the method of reflected caustics
is sensitive in examining the singular fields developed at the comers of the rectangles. Moreover.
the minimum radii of the initial curves of the caustics are determined. outside of which the stress
fields could be describt.-d by the singular solution. Eltperiments with reflected caustics in plexiglas
plates corroborated the theoretical results.

INTRODUCTION

Searching in the abundant literature related to the experimental evaluation of the stress
intensity factors at the tips of cracks and other kinds of singularities. based on the concept
of LEFM, one may realize that a great deal of these experiments were executed in artificial
cracks, where the crack is modelled by .1 rectilinear slit sawn in the plate, and the only
prccaution taken was that the flanks of the slit werc not far away from each other. Then
thc stationary crack was modellcd as an orthogonal narrow slit (Theocaris. 1986a).

The main difference betwccn an actual crack and an artificial one is that in a real crack
the flanks ofthe crack are only separated from each other by some kind of failure mechanism
(cleavage, slip deformation. etc.) and no matcrial is missing bctween the flanks, so that if
the crack is submitted to a simple compression loading (without shear) the flanks close and
there is no stress concentration appearing at the crack tip. On the contrary. in an artificial
crack material is removed between the flanks of the slit and therefore the artificial crack
under compression presents stress concentrations at the tip, as well as along its flanks.

Early work on the influence of the blunt tips of a crack on the stress distribution at
the vicinity of the tip was carried out by Creager and Paris (1967). It was shown, among
others, that the stress distribution ncar the singular tip for blunt cracks is the same as the
stress field around a sharp crack. corrected by additional terms depending on the radius of
curvature of the blunt notch. It is interesting to note that the correction terms for the
normal stresses in a plane-stress problem are equal and of opposite sign. so that the first
stress invariant remains always independent from these correction terms.

Thus, while the continuum model of a crack is a planar conglomeration of voids of
zero thickness and the corresponding mathcmatieal model is a plane of discontinuity, the
representation of a real crack by a slit creatcs a third model. where the crack is represented
by a removal ofa rather thick layer of material. These differences in the models are striking
and they are the main cause of large discrepancies in the results.

Another consequence of the difference bctween the models of a real and an artificial
crack concerns the singularities at the crack tips and their orders. Whereas. for a real crack
in an infinite elastic and isotropic plate. the order of singularity at the tip is ). = 1/2, in the
artificial crack we have a pair of corners for each tip, which for simplicity may be assumed
as 90°. Corners create a doublet of singularities for either corner. which. according to the
theory of multiwedges. are of an order depending on the angle (2n-lp) = 3n/2 and the
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Fig. L (al A plate cont'lining a r~'Ctangular hole of a certain side ratio m = a,h and an O.H-frame
the origin of which is placed at the ccnlre of the rectangle. fbi The transformed C-plane which maps

the perforated plate into the interior of the unit circle.

material properties of the plate (Theocaris. 1974). This difference in the arrangement of
singularities at the tips is of primordial interest.

Another interesting paper concerned with the stress field near blunt cracks and its
inl1uence on the fracture criterion of the material was presented by Kuang (1982). In this
paper the two-term solution for the ncar-tip stress tiekl was extended to contain the influence
of the bluntness of the crack. The inl1uelH.:e of the crack-tip radius was also studied on the
fracture criterion. based on the classical S-criterion for sharp cracks. Again. in this paper,
the dill"crences in the sharp crack and the hlunt crack models are considered and their
inl1uence on the form and the m;lgnitmk of the ncar-tip stress fields indicated.

Blunting of the cracks was also cxtensively t:onsidered when plastic deformation begins
to he installed at the vit:inity of the crack tip. when the blunting of the crack becomes
conspicuous ami its inl1uelH.:e on the interaction hetween the crack tip and the cloud of
voids developcd in the vicinity of the crack tip was encountered for studying fracture
processes hy void nucleation, coalescence and interaction with the main crack (Theocaris.
IlJX6h).

In this paper, the dil1i:rences in the topography of the deformed dastic field around
the corners of a rectangular hole in a plate submitted to tension and the deformed area at
the vicinity ofa mathematical model ora craek under simple tension were studied (Theocaris
and Pal.is. IlJXJ).

By using the method of reflected caustics, it may be observed that, for low levels of
loading, individual caustics were formed at each corner of the hole. As the loading increases
the two caustics of either corner of the rectangle interact and make the caustics interfere
and coalesce. As the load is further increased, a third mode of deformation may be attained,
whcre unique caustics arc formed from either pair of singularities at the corners of the
rectangle. These caustics arc similar to the caustics derived from the mathematical model
of the crack.

The stress field around the rectangular hole was given by Savin (1961) for rounded
ofr corners and difrerent side ratios. Savin's solution used the SchwarzChristofrcl trans
formation to map the outside of the rectangular hole to the inside of the unit circle. The
transformed stress function. represented in a series expansion, was truncated to a certain
number of terms. thus rounding the corners of the rectangle. In this paper the Muskhclishvili
stress function. used for thc solution. was expanded to an infinite number of terms. in order
to assure an acccptable curvature of the corners. Morcover, the side ratio was considered
as a variable, in order to form difrerent artificial cracks with the appropriate side ratios.

TilE CO:'-iFORMAL MAPP'7"G FU:'-iCTIO:'-i

Let the :-plane in Fig. I represent the plate containing a rcctangular hole. the side
ratio h/a /1/. and thc origin of the thy-frame of which is placed at the centre of the
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rectangle. On the other hand. the ~-plane represents the transform plane. where the per
forated plate is mapped into the interior of the unit circle (p = 1). In the case of rectangular
holes in the plate with different side ratios approximate values for the conformal mapping
function:: = wG) can be readily obtained from the Schwarz-Christoffel integral given by
Smirnov (1933)

r( a)'l-I( a,)':-I( a)'J-1( a)"-I:: = w(~) = J! 1- -f 1- -t 1- -;- 1- t
4

dt. (1)

Points al. a1. aJ and a4 on the unit circle correspond to apices AI' A2• A) and ~ of the
rectangle and they have been conveniently selected. by defining the angle e= k1t to satisfy
the obligation to yield the given side ratio for the rectangular hole. Then. it is valid that
(Savin. 1961)

(2)

On the other hand. the real positive constants IX; (i = I. 4) indicating the fraction of 1t

corresponding to the exterior angles of the rectangle take the values

IXI = 1'£2 = ;XJ =!X4 = 3/2.

Then, eqn (I) may be written as

with ItI ~ I.
Equation (4) may be also written as

(3)

(4)

where eodlicients {l" are given by

Finally, the w«()-function may be approximated as

(6)

(7)

where the factor R,\' is a real factor characterizing the magnitude of the rectangle.
Equation (7) maps the rectangle with sharp corners to the unit circle if N - IX>. If a

finite number !Vr is considered in the series expansion ofeqn (7). the corners of the rectangle
become rounded-olf. They prescnt a radius of curvature I'c depending on N given by

(8)

where x. yare the coordinates of each corner of the rectangle in the complex plane
:: = (x+iy). and they arc expressed by
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Table I. The values of the constant R, and the radii of curvature P,.,. normalized to the small side h of the
rectangular hole with m = 5.3. 16.8. and 39.8. as well as the maximum values of the SIFs along the boundaries

of the holes

k = 5j36 ajb:o: 5.23 k = 3.36 aib:o: 16.8 k = 2.36 a b:o: 39.8
N RNib p,.,'b SCF, N R,h Pc.,b SCF, N R,b P,.v b SCF,

4 1.7485 0.06484 7.0530 4 4.9173 0.~181~ 8.~176 4 11.1931 0.59990 1.4531
5 1.7520 0.06456 7.1~80 5 4.6105 0.10381 11.3~~7 5 10.0963 O.3~863 10.0708
6 1.7278 0.04499 8.6666 6 4.7545 0.07214 132570 6 10.8~37 0.21431 13.0865
7 1.7470 0.02900 10.5610 7 4.7050 0.06606 13.·m6 7 10.3228 0.12829 16.3772
8 1.7406 0.02651 10.7750 8 4.6981 0.06559 13.5263 8 10.6389 0.09113 19.3401
9 1.7368 0.02513 11.1924 9 4.7321 0.05870 1·15311 9 IOA508 0.07180 21.1086

lO 1.7441 0.01900 12.8520 10 4.6913 0.04552 16A74~ 10 IO.54~0 0.06713 21.5540
11 1.7390 0.01534 14.0033 11 4.7265 0.034-11 18.7931 11 10.5177 0.06663 21.4862
12 1.7397 0.01527 13.9842 12 4.7029 0.02826 20.3381 I~ 10.4974 0.06577 21.7034
13 1.7422 0.01377 148214 13 4.7133 0.0~698 20.6~68 13 10.5441 0.06~01 22.5591
14 1.7391 0.01100 16.4067 14 4.7142 0.026% 20.6:'48 14 1O.485~ 0.05430 24.1158
15 1.7407 0.01015 16.8970 15 4.7058 0.02531 :':1.3973 15 10.5459 0.04590 26.::739
16 1.7412 0.01007 17.0071 16 4.7175 0.0:':186 :':303:':2 16 10.4909 0.03765 28.7350

x::::: R,v{COS 0+nt Cn cos [(2/1-1)0]}

y = R.v { -sin 0+ nt, C" sin [(211- IWI}.

(9)

( 10)

Here the primes and double primes denote differentiation with respect to the angle 0 for
values of () ::::: kTt.

If it is desired that all the rectangles for different values of N maintain the same small
side h. the real constant R,v may take the values

n

I + 2: (- 1)\ c"
n -- l

(II)

The values of constant R,v and of the radii of curvature Pc'" normalized to the small
side. h. of the rectangle arc given in Table I for parametric values of k and therefore of the
side ratio alh.

Three different rectangles were examined with side ratios ;. = 5.23. 16.8 and 39.7 with
k = 5/36. 3/36 and 2/36. It may be observed that the greater the number of terms, N, in
eqn (7) the sm'lller are the values of the radii of curvature of the corners of the rectangles
PeN Ih, normalized to the side h, whereas the ratio Rv/h remains almost constant.

Since the finest cutler for sawing an artificial slit could have a thickness of the order
of d = 0.0003 m, then the lengths of the crack for the above examined three cases arc
respectively a ::::: 0.0016, 0.005 and 0.015 m. which. especially the third one, are suitable for
initial cracks in the fracture mechanics tests. On the other hand. the radii of curvature at
the corners take values varying between fle"lh -= 0.3 and 0.03.

EVALUATION OF THE STRESS CONCENTRATION FA(.IORS AT TilE CORNERS

For an infinite plate submitted to a tensile stress, p, at infinity, pamllcl to the Oy-axis,
passing through the origin 0 lying at the centre of the rectangular hole, the complex
potential function cp(:) is given by (Muskhclishvili. 1(53)

p:
(p(:) =4' + (p*(:).

The function (p(:) in the mapped (-plane is expressed by

(12)
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where q1o(C) is a function expressed by

:.c :.c

q1o(C) = L erCr = L {Re er+i 1m er}Cr
r= 1 r= 1

where e;s are complex constants.
The boundary conditions for the basic stress field are given by

o 0 p ,--II +i12 = - Z[w(o")-e·'·w(O')]
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(13)

(14)

(15)

where exponent ~ denotes the angle subtended by the external loading axis and the Ox-axis
of the rectangle. and 0' represents the points along the boundaries of the hole and of the
circumference of the unit circle in the mapped plane C.

For the determination of the unknown q1o-function use was made of the integral
equation given by Savin (1961)

(16)

where now' is a point inside the unit circle y. The integral on the left-hand side ofeqn (16)
may be approximated to

• I f(/)(0') -,-- dO' N 2(N ~.)
q1o(~)+ 2--; ::::= cpo(O') -(-') = L L rP(n)( Re e, - i 1m l:,}(N -. - 2

7tI (/)'(0') 0'-., ._1 ,al

00

+ L (Re e,+i 1m e,)(' (17)
r_ I

where the P(n) are given by the recurrence formula

P(n) = cN .•+I-P(I)e._1[2(n-I)-I]- ... -P(n-I)c,

with P(I) = -eN'
On the other hand, the integral on the right-hand side of eqn (16) is approximately

expressed by

(18)

Comparing now the coefficients of the corresponding real and imaginary parts in the
respective terms of power of' in eqns (17) and (18), we obtain a system of 2(2N-I)
equations which when solved yields the values of the real and imaginary parts of e,.

If relations (7) and (14) are introduced into relation (13) they yield the following
expression for the q1.«()-function:
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Fig. 2. The distribution of the stress concentration factor along the twundaries of the rectangular
hole in a plate submitted to simple tClIsion at infinity.

( 19)

Since along the boundary of the rectangular hok the normal to the boundary com
ponent of the normal stresses is zero, it remains from the first stress invariant only the "'1'

component, parallel to the boundary of the hole. Then, it is valid that (Smirnov, 1933)

[
IP'(O]

(1,p = 4 Re-, ~ .
w (",)

(20)

This value for (1", becomes equal to infinity for w'(O = 0, that is, at the sharp corners of
the rectangular holes. For rounded-ofT apices of the hole the "",-stress becomes a maximum
without tending to infinity. This maximum value, normalized to the applied tensile stress
at infinity, p, yields the stress concentration factor at the respective corner. The SCF is
given by

(21 )

Figure 2 presents the distribution of the stress concentration factors along the bound
aries of the rectangular hole in a plate submitted to simple tension at infinity, normal to
the long side of the rectangle. The rectangular hole corresponds to k = 5/36 and it was
taken as N = 4. It may be observed from the SCF-distribution that the small side, h, of the
rectangle is under tension with maximum stress concentrations at corners Al and Az, as
expected, and minima at the mid-length BI of the short side AI Az of the rectangle. On the
contrary, the SCFs along the long side diminish rapidly from their values Al A; and AzA;
at the corners, they pass through zero at points C 1 and Cz, and they become negative
indicating a compressive state of stress along the long sides. Again, the minimum com
pressive SCF appears at the middle points M 1 and Mz of the long sides, but this minimum
is smooth, since along the greater part of the long side the SCF varies only very little,

It is worthwhile to evaluate the Il:-displacement along the thickness of the plate. For
plane-stress conditions in the plate the Il:-displacement is given by
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Fig. 3. The shape of the deformed lateral upper face of the plate at the vicinity uf the short side of
the rectangular artificial crack. as plotted hy computer.
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(22)

where d is the thickness of the plate, v and E arc Poisson's ratio and the elastic modulus of
the material of the plate and Re indicates the real part of the ratio of functions cp~(O and
w;... (O in the (-plane.

In Figs 2 and 3 the quantities plotted by computer were presented in an axonometric
projection, in order to show the variation of these quantities in space along the boundaries
of the rectangular crack, which is inclined to a 60"-projection.

Figure 3 presents the shape of the deformed surface of the upper face of the plate at
the vicinity of the short side of the rectangular crack, as plotted by computer. Corners Al
and A2 present very abrupt craters, due to the singular stresses there. The depths AlA; and
A2A; corresponding to the craters at the corners represent the maximum submersions of
the lateral faces of the plate. On the other hand, the submerged middle point B, of the short
side of the rectangle goes to B;, which corresponds to the point of minimum submersion
of the boundaries of the rectangular crack.

The deformed lateral face of the plate then takes the form of a saddle at the vicinity
of the short side of the rectangular crack. The lateral deformed Ox-axis between points B1

and L, goes to the B; L;-curve, which presents a relative minimum inside the plate at point
S, which realIy corresponds to the bottom of the ridge of the saddlc-like surface of the plate
at the vicinity of the rectangular crack.

THE REFlECfED CAUSTICS FROM THE CORNERS OF TilE RECfANGUlAR CRACK

It has been shown (Theocaris, 1981) that for an elastic plane-stress field only the one
Muskhelishvili complex potential, c/>(=), suffices to express the generatrix curve of the
caustic, formed when the rays of a light beam are reflected from the close vicinity of the
singular zones of the stress field. This curve is given by
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jC4>"(=li = 1. (23)

This generatrix curve. called the initial cuneo forms in space a caustic surface. the
intersection of which with a reference plane. placed at a distance =0 from the stress field. is
a caustic curve expressed by

(24)

In these relations C is an overall constant containing the mechanical and optical properties
of the plate and the characteristic dimensions of the optical arrangement and I'm is the
magnification factor of the optical set-up. given by

. =,,+=,
10m = ._-:.-.. -

-,
(25)

where Zi is the distance between the focus of the light source and the specimen.
The function 4>(=). the first and second derivatives of which enter into the expressions

for the caustic and its initial curve. is given by

Then. these derivatives arc expressed by

" I {". , . u/'«()}(P (=) = [(j)'(~)]2 (P (,,) - (/) (<.,) u/«() . (26)

In these relations 4>' (0 and 4>"(~) arc the first and second derivatives of the complex potential
4>(0.

The constant C is expressed by

C = 4=,~"cr.~
I· m

(27)

where the only unknown is the optical constant for the material of the plate. which for
reflections from the rear face (cr) must be measured by interferometry. whereas for reflec
tions from the front face takes the value Cr = viE. Finally. = is the complex distance in the
plane of the plate (: = x+ iy) and Wexpresses the vector of deviation of the light rays on
the plane of reference. where the caustic is formed.

Relation 4>"(=) in eqns (26) may be written in the form

4>"(=) = i£ /(~) (28)

where /(0 is a polynomial function of (. which does not present singular points. This is
due to the fact that the w'(O-function is different than zero all over the plate since the
orthogonal hole has rounded-off corners in this plane. The constant coellicients of the
polynomial depend on the ratio m of the sides of the hole and the desired curvature at its
apices.

The 4>"(:')-function is also proportional to the applied stress p at infinity of the plate
and inversely proportional to the square of the major axis of the hole. which is expressed
by the quantity ReV'
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i',Ill = O.OC>7h.

The equation for the initial curve (eqn (23» may be written as

IC·f(~)I'" I

where

(29)

The overall constant C* is a non-dimensional quantity and it contains the characteristic
quantities of the optical setup =0 and )'m' the stress optic coefficient Cr, the thickness d of
the plate which must assure plane-stress conditions, the applied stress p at infinity and the
ratiom.

The solution ofeqns (29) and (24) is achieved numerically by a convenient computer
program. Figure 4 presents the initial curves and the reflected caustics of an infinite thin
plate containing rectangular internal holes with rounded-off corners for m ... 5.3. having
radii of curvature PetO'" O.019b (Fig. 4(a», as well as for m:= 39.8 and respective radii
PdO := O.067b (Fig. 4(d». The index 10 in the radii of curvature means that these radii
correspond to values derived from 10 terms in the series approximations of the tf>{z}
function.

Figure 4(b) for C· ... 0.07 yields initial curves separated from each other for each
corner ofthe hole. This means in such radii the craters at each corner are independent ofeach
other and in these radii of initial curves the ":-displacement contour lines are independent of
each other. Moreover, the initial curves for these corners may be approximated to a high
degree of accuracy as circles with centres the points lei and Ie: coinciding with the virtual
singular points of the plate (Theocaris and Petrou, 1986).
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Fig. 5. The evolulion of the posilion of the cenlre k, of one circular branch (A B) of the initial curve
for rectangular holes with side ratios m = 1.0. 11.8. 39.8 and 72.9. respectively.

The internal caustics at each corner present cusps derived from the reflections of light
rays from the local minimum points of the II;-displacement craters along each initial curve.
The vector W defining the caustic is normal to the tangent of the initial curve at these local
minima. whereas for the external branches of caustics these points yield local maxima in
the respective caustics.

For increasing values of C* attaining a valuc C* = 0.09. which is achieved by changing
the arrangement of the optical set-up without changing the loading conditions of the plate.
the initial curves at the respective corners of the minor side of the rectangle evolute to a
unified curve shown in Fig. 4(c). This curve is formed from segments AB and CO which
arc to a good approximation parts of circumferences with centres k, and kz• connected by
the adaptation curve BEe. Thc AB and CD circular segments lie inside either crater whereas
the BEC segment traverses the hill formed bctween the two craters of the corners.

Moreover. the caustics for C* = 0.()9 also arc unified. presenting an internal caustic
with two cusp points and the external caustic with one smooth cusp zone. The cusp points
of the internal caustic arc derived from points Band C of the initial curves lying inside the
craters of the u;-displacements ofeither corner. whereas the cusp zone of the external caustic
originates at point E of the intersection of the transverse axis of the hole and the initial
curve for the rear face, the point which corresponds to a local minimum.

The vector WEI = Wit = 0 when the initial curves pass through point S of the longi
tudinal axis of the rectangular hole (Fig. 3). When point E lies on the B'IS segment then
the internal and the external caustics cross each other. whereas when point E lies on the SL
segment the respective caustic lie on both sides of the initial curve. separated from each
other.

For values of C* higher than the above value the initial curves envelop both craters
without penetrating in either of them. Figure 4(d) shows such a case of initial curves formed
in a rectangular hole having a side ratio m = alh = 39.8 and an overall constant C· taking
the value 0.07. In this case also each initial curve is formed, to a good approximation, by
the circular segments AB and CO with centres k, and kz• respectively. joined together by
the adaptation curve BEe. In this case. however, only the internal caustic presents a unique
cusp point. which is generated by point E of the initial curve. This point is a local minimum
of the II;-displacements when this curve lies outside both craters of the corners (Fig. 3).
This caustic resembles the caustic corresponding to a mathematical crack disposing a single
crater.

Figure 5 shows the evolution of the positions of the centre k l of the one circular sector
AB of the initial curve for rectangular holes with side ratios m = 1.0. 16.7,39.8 and 72.9.
One may observe in this figure that these centres. when the respective initial curves lie inside
the crack craters, have an almost stationary position near the rounded-off corners of the
hole. When the initial curves are partly gelling out of the craters, these centres move towards
the centre of symmetry of the hole.



From the rectangular hole to the ideal crack. 223

t
J
I...
;;

0r:::z:?===......__4.u._..!-_~:!:'

o o.~ O.O'SO 0.075 0.100

C"-
Fig. 6. The values of the Yoo' and xOk-eoordinates of the centres k, of the initial curves. vs the values

of overall constant C·. lying inside the interval 0 < C· ~ 0.1.

For the case of a square hole with m == 1.0 point k, is stationary for C· ~ 1.0 and then
follows a parabolic path tending towards the centre of the square. In this case the respective
centres k l are equally attracted from all comers of the square and they tend symmetrically
to the centre of the hole.

For m == 39.8. for a curvature radius of the rounded-off corners equal to P"IU == 0.067b
and for values of C· < 0.03 the centres of the initial curves remain stationary. For values
of C· > 0.03 these centres move rapidly. almost normally. at a distance equal to O.lb from
the minor side of the hole and then move toward the centre of the rectangle. A similar
movement pn,,'SCnts the points k1 for the hole with m == 72.9, whereas for m == 11.8 points
k1 follow an almost straight line inclined to 45" to the sides of the rectangular hole for
values of C· > 0.3.

In Fig. 6 the values of the YOk and XOk coordinates of the centres kl are presented vs the
values of the overall constant C· lying inside the interval 0 ~ C· ~ 0.1. This interval is the
most important. bl.'Cause for such ratios of m and loading steps C·, the rectangular holes
assimilating artificial cracks are normally tested in the experiments.

THE COMPLEX POTENTIAL FUNCTION 4>(z) "" K{2(2:)'

Let us assume a stress field which is described by the complex potential (Theocaris.
1975)

K
</1(=) == 2(2:)A (30)

where K represents the complex SIr and l is the respective order ofsingularity in tllis field.
The initial curve of this field is given from relation (23) and it is expressed by

(31)

We may observe that the initial curve is a circle of radius '0 given by (Theocaris and
Prassianakis. 1980)

1

A.(l+ I) j110+21
'0 == 2(A+ Il CI KI

with its centre lying at the point z == O.
The respective caustic is given in parametric form as follows [IO}:

(32)
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x = ;'m'0 [cos ep + U: I) COS (ep(l +;.) - w) ]

Y = ;'m'O [Sin ep + --'-£-1"- sin (ep( 1+ ;.) - UJ)J.(..... + ) (33)

The quantities '0 and ep express in polar coordinates the points of the initial curves and
£ is given by £ = sign ellel taking the value £ = I for reflections from the rear face and
c = - I for reflections from the front face of the cracked plate. Angle w is expressed by

(34)

or

K= (KI-iKIl ) = IKI exp (-iw).

By rotating the reference frame, k,x,y, in Fig. 4(b), by an angle () = wi;. in the new
position k,x'r', as it has been done by Williams (1957), the parametric equations of the
caustics arc simplified as follows:

[
I: ]X' = ;'Il\'O cos (P' +--, ' cos (I + ;.)tp'

( +1.)

[
I: JY' = ;.".'n sin (P' + (' +i) sin (I + i.)(P' . (35)

Equations (35) represent the caustic of Fig. 4(11) which is referred to the frame k,:(y'
with ;111 axis of symmetry the k,x' -axis. The maximum transverse diameter of this caustic
D;"a, = 2 Y;lla, is parallel to the k,y'-axis and it is given by (Theocaris and Petrou, 1987)

l') Il\'U_')' [ .. n I,. n(I+;')J
I -_I'll\ro sin') , +(1 ' SIl1 ') , .

(_+1.) +1.) (_+ ..... )
(36)

Furthermore, in the k,x'y' system of axes it is valid thatlKI = IKtl and therefore

(37)

By studying the caustics formed by initial curves lying inside the craters of each
rounded-oIl' corner of the rectangular hole we observe that the angle, () (sec Fig. 4(a), (b».
of rotation of the caustic remains almost constant for radii of the initial curves satisfying
the condition '" ~ 0.12h. For values,o > 0.12h the angle of rotation of the caustic increases
rapidly in the area of values of '0 tending to yield a unified caustic. enveloping the minor
side of the rectangle. Subsequently the two cusps of the internal caustic approach each
other and they arc displaced in the interior of the hole, whereas the unique cusp of the
external caustic recedes from the hole.

For values,o > 1.20h the two cusps of the internal caustic coalesce, whereas the cusp
of the external caustic disappears. The final form of the caustics for high values of C· and
therefore for increased steps of the loading of the plate is presented in Fig. 4(d) and
resembles the caustics of Griffith cracks.

Therefore, according to the previously established evidence. the evaluation of SI F and
of the SO according to the theory developed in this paper, may be carried out with accuracy
only in the regions where '0 ~ 0.12h or '0 ~ 1.20h.
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Indeed. in the region where '0 < 0.12b it may be evaluated from the angle ~ of rotation
of the caustic as well as from the ratio of the diameter of the caustic and the radius of its
initial curve that the order of singularity tends to the value t. == 0.455. which is given by
Williams (1957) for a notch of an angle <p == n/2.

The SO for the caustic of Fig. 4(a) is evaluated (Theocaris. 1975) as t. ~ 0.47. The
determination of K. and Kn may then be readily carried out by using relations (37) and
(34). The region of validity of these values is rather small and without practical meaning
for artificial cracks' of the experiments. On the contrary. great interest presents the region
'0> 1.20b for the evaluation of K1. since in this region an overall SIF may be evaluated
from the unified caustic. which is a mode-I SIF since the rotation of the caustic is annuled.

Tables 2--4 contain the values of SIFs and 50s describing the stress field around the
centre k l of the initial curves. This region is extended to the longitudinal axis of symmetry
of the cracked plate. whereas the other half is symmetric to this one. In the same tables the
coordinates of the centres k l of the initial curves in columns 3 and 4 (see also Fig. I) are
given. as well as the values of Aand K.lp in columns 10 and II.

The values of K, as they have been derived from the diameter D,;,a< of the caustic
assuming as A== 1/2 are given in column 12. whereas the discrepancies between these values
and the theoretical ones based on the relation K. == (J .' J(I for a natural crack are included
in column 13.

While Table 2 contains the case of a rectangular hole with m == 39.8. Table 3 cor
responds to m == 72.9 and Table 4 to the Gritlith crack. The selected values of m's are those
which arc frequently met in urtificial cracks of experiments.

Figure 7 gives the values of the radii of the initial curves normalized to the half-crack
length vs the overall constant C·. One may observe that the values of 'ula for C· :::; 0.025
coincide with the respective values of the Grillith crack. whereas the rectangular hole with
111 = 3lJ.R does not present a caustic of the form of Fig. 4(c) in this region.

It is worthwhile noting that almost all of the experimental cracks. when they arc
artificial. lie in the zone 40 :::; 111 ~ 70 and the experimental set-up. the crack length. the
thickness of the specimens and the external loading are such that they yield values for K,
which differ between them only by 5'}/0. Moreover. in the applications of caustic nobody
evaluates the radius of the initial crack. but calculates directly. from the diameter of the
caustic the respective value of SI F.

In order to check the stress field near the corners of the rectangular hole. as it is derived
from the proposed method evaluating K. and )., the values of the sum of the principal
stresses were checked with the values derived from the theoretical solution giving Kl == pJa
and t. == 1/2. This sum was calculated according to the two methods along the long axis of
symmetry of the rectangular hole (see Fig. 10).

While the traces marked as I represent the theoretical values. traces II correspond to
Kdp == (0.929/2) I!~ == 0.603 - J!2. t. == 0.50 with origin the point (xoklb == 36.35. YOklh == 0).
and traces II[ to values of the sum corresponding to K,/p == 0.4208 and ;. == 0.57 with a
centre having coordin'ltes xllk,lh == 36.35 and YOk,lh == 0.25. It is clear from these curves
that an improvement of the values of the sum of normal stresses relative to the theoretical
values as defined by the method of this paper is achieved when these values are compared
with the respective curves corresponding to the singular solution.

EXPERIMENTAL EVIDENCE

A series of tests was undertaken for the study of the ,Caustics appearing at the corners
of artificial cracks existing inside infinite plates submitted to simple tension at infinity. For
this purpose three series of specimens made of PMMA were used. The dimensions of the
specimens were: width II' = 0.10 m. length outside the jaws I == 0.20 m. thickness d = 0.003
m. In all these specimens internal slits parallel to the short edges of the plates and at their
mid points between jaws were cut with a very fine saw of thickness t == 0.0003 m. The ratio
of the sides of the rcctangular holes 111 == ll/h were taken equal to 5.3. 40 and 73. whereas
the lengths of the artificial cracks were respectively 0.025. 0.012 and 0.021 m. Finally. the
angles at the corners of the rectangles were rounded off with curvature radii approximately



OJ
OJ

Table 2. The values of SIFs and SOs describing the stress field around the centres k, of the initial curves of a rectangular hole with m = 39.8. The a-

coordinates of the centres k, of the initial curves are given in columns 3 and 4. The values of K1 as they have been derived from the diameter
J)~' of the caustic assuming;. = I(! (column 12), and the discn:pancies between these values and the theoretical ones, based on the relation

K1 = p,./(a2j for the natural crack (column 13)

2 3 4 5 6 7 8 9 10 II 12 13
K';p Percentage

Ktlp n,-]/2 error
a/a C' x",,/b J'ollb roib 2ro1Q D,m.il;b D;~'I> D;tn4J,./,o ;. ",,..-2 when;' = I (%j

I 0.03 19.87 0048 1.55 0.078 5.88 4.92 3.174 00495 0.349 0.530 16
2 0.05 19.85 0042 2.00 0.100 7.05 6.21 3.105 0.550 0.291 0.500 II
3 0.07 19.84 0.38 2.335 0.117 7.96 7.20 3.083 0.570 0.273 0.484 8
4 0.09 19.84 0.36 2.61 0.131 8.73 8.01 3.068 0.580 0.268 0.474 6
5 0.10 19.84 0.34 2.745 0.137 9.08 8.40 3.060 0.585 0.274 OA71 5.5 ~

6 0.20 19.1l2 0.28 3.70 0.186 I!. 72 11.16 3.016 0.620 0.244 0.446 0.0 !Il
7 0.30 19.79 0.24 4.385 0.220 13.60 13.12 2.992 0.635 0.237 0.431 -3.5 -l

8 0040 19.76 023 4.935 0.247 15.12 14.66 2.970 0.655 0.221 0.422 -6 ~
>

aib = til = 39.83; R,o = 0.1054 m. "lA
r-
:3
Q.

Table 3. The values of SIFs and SOs describing the stress field around the centres k, of the initial curves of a rectangular hole with m = 73. The r-
coordinates of the centres k, of the initial cunes are given in columns 3 and 4

~2 3 4 5 6 7 8 9 10 11 12 13
0

K./p Percentage r-:
K,jp ",-3/1 error

a/a C' x",,/I> Ym,/h roib 2roiu D~.;b D;m.... l h D'm,.u I. n,1-2 when;' = I (%)t '0

I 0.005 36.38 0049 1.32 0.036 5.26 4.28 3.242 0.45 0.586 0.753 20
2 0.0075 36.35 0043 1.65 0.045 6.050 5.19 3.145 0.52 0.438 0.712 15
3 0.011 36.35 0.38 1.98 0.054 6.96 6.20 3.131 0.53 0.447 0.689 12
4 0.020 36.34 0.30 2.61 0.072 8.68 8.08 3.095 0.55 0.443 0.658 8
5 0.030 36.34 0.27 3.10 0.085 10.04 9.50 3.065 0.58 0.392 0.631 4.5
6 0.040 36.34 0.25 3.485 0.096 11.24 10.74 3.081 0.57 0.418 0.627 4
7 0.050 36.35 0.25 3.81 0.105 12.24 11.74 3.081 0.57 0.421 0.622 3
8 0.075 36.34 023 4.50 0.123 14.25 13.79 3.065 0.58 0.410 0.606 0.5
9 0.100 36.35 U.22 5.055 0.139 15.9U 15.46 3060 0.58 OAII 0.598 -0.01

alb = til = 72.92; RIO = 0.18853 n1.



Table 4. The values of 5IFs and 50s describing the stress field around the centres k, of the initial curves of a Griffith crack. The coordinates of the centres
k, of the initial curves are given in columns 3 and 4 ."...

0

2 3 4 5 6 7 8 9 10 tt 12 13 a
K1/p Percentage If

K,jp m- 1/ 2 error
~a/a C· '-':o/l/(a/2) yo./a ro/b 2ro!a x 10 D':"'/ax 10 D;...."a x 10 .5 = D;""I'o J. mJ - 2 with J. = I (%) S'
CI

I 0.Q1 0.9997 - - 0.5352 1.6794 1.6794 3.138 0.525 0.2643 3.30H 2.5 '[
2 0.03 0.9993 0.IH05 2.5861 2.5861 3.113 0.542 0.2388 0.3022 4.4

III- ...
3 0.05 0.9989 - 1.0190 3.1656 3.1656 3.106 0.547 0.2334 0.3006 4.9 6
4 0.07 0.9985 - 1.1657 3.6104 3.6104 3.097 0.554 0.2248 0.2983 5.6 n
5 0.09 0.9982 - - 1.2888 3.9790 3.9790 3.087 0.562 0.2150 0.2959 6.4 0
6 0.10 0.9980 - 1.3448 4.1488 4.1488 3.085 0.564 0.2194 0.2956 6.5 If
7 0.50 0.9917 - 2.5600 7.6850 7.6850 2.002 0.630 0.1570 0.2760 12.7 is.:
8 1.00 0.9890 - 3.4000 9.9448 9.9448 2.920 0.693 0.1222 0.2696 14.8 R

t)

alb = til = 00; R., = 0.1054 m. ~
lJ'<"

lj.....



P. S. THEOCARIS and L. PETROl:

0.1000.07S0.050
C"-

0.025

0<..- ........ -'- --'

o

Fig. 7. The values of lhe radii of initial curves. normalized to the half crack length. vs the overall
constant C· for the rectangular holes with m = 39.8. 72.9 andx.

equal to O.06b for each type of crack. The shapes of the cracks are given in Figs 8(a) and
9(a), respectively.

It was evaluated for such dimensions of the artificial cracks that the number of terms
N should be 4, as this can be derived from Table I. Indeed. we can achieve a very good
approximation in the series expansion of cP(::) for N = 4 and m = 5.3 yielding a radius of
curvature R4 = O.OOR7 m. f-or the specimens with 111 = 40 it is necessary to consider 10
terms and obtain a radius RIO = 0.0032 m, whereas for the specimens with m = 73 the
radius RIO becomes RIO = 0.0054 m. We may observe that the radii R for all these cases
tend to he equal to one quarter of the length of the artificial crack.

The optical arrangement for applying the method of caustics is a typical one described
previously (Theocaris, 1981). The optical constants of the material used in the tests were
evaluated to be c, = -3.34 x 10 10 m! N 1 and Cr = 1.0 x 10 10 m~ N 1. Figures 8(b) and
(c) present the caustics for the specimen with 111 = 5.3 for C" = 0.065 (Fig. 8(b)) and 0.135
(rig.8(c).

We may observe that for C" = 0.065 we dispose two caustics for either corner of the
artificial crack, whereas for C" = 0.135 we obtain only a unified caustic for both corners
of the minor side of the rectangle for reflections from the rear faces of the specimens.

This caustic presents a single cusp point. It is clear that this experimental evidence
corroborates the findings of the theory concerning the shape and size of the caustics.

Figure 9(a) presents the unloaded perforated plates for m = 40 and 73. respectively,
in a magnification corresponding to A.m = 15.0. Figures 9(b) and (c) show the experimental
and the theoretical caustics when C* takes the values 0.2 and 0.1, respectively. Again a
satisfactory coincidence appears between the theoretical and experimental caustics.

The values of D~,a'ia derived from the experiments and the theory present a deviation
of 1.5% for m = 40 and 1.0% for m = 73. The error in the experimental evaluation of K,
depends on the error of estimating the size of the maximum transverse diameter D';'ax of
the caustic raised to a power equal to the exponent of this diameter appearing in the
respective relationship. This error was estimated to be of the order of 3% which explains
the existing discrepancies between theory and experiments.

RESULTS AND DtSCUSSlON

Most experimenters have recourse to artificial cracks for the study of the stress fields
in cracked plates instead of natural cracks. This is done because the preparation ofa natural
rectilinear crack is difficult to achieve satisfactorily, especially when a particular orientation
of the crack axis is obligatory. However, the artificial crack is always a rectangular hole
with a defined ratio m = alb between the sides of the rectangle. Moreover. the corners of
this hole never achieve an infinite curvature. Since the rectangular hole representing the
artificial crack is always with rounded-ofT corners it can be studied analytically by mapping
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(a)
rectangular

hole m:5.3

external caustic
(*:0.065,...........,-----

(bl

external caustic
*C:0.135

Fig, fl, The unloaded JK:rforatL'd plate: for m => 5.3 (a) and the: theuretical and eXJK:rirnelltall:llustics
for the IO;lded p"lte with C· :; 0.065 (h) :md C· => 0.135 (el.
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its shape inside the unit circle, using the Schwarz-ehristoffel confonnal mapping
method, and defining the corresponding complex stress function (JI(O according to the
theory of Muskhelishvili.

Comparing the tangential components ofstress along the boundaries of the rectangular
hole of Fig. 2. as well as the u:-displacements along these boundaries, shown in Fig. 3. we
make the following remarks.

(I) The singular points corresponding to either tip of the crack. which are unique for
the natural cracks, are doubled.

(2) The whole boundary of the natural crack presents positive u:-displacements except
at the crack tips where each undeformed tip is split into two points one of which goes to
minus infinity and represents the bottom of the crater formed around the crack tip, while
the other is raised to the same height as the boundaries of the crack constituting the
extremity of the ridge formed by the lips of the crack (see Fig. 2 in Theocaris and Petrou
( 1987».

On the contrary, the minor sides of the artificial crack C.A,A2C2 in Fig. 2 are under
negative u:-displacements. whereas the major sides M,C. and M2C2 are under positive u:
displacements. Moreover, the unrealistic phenomenon of the double displacement of the
crack tip, due to the influence of singularity there. disappears.

(3) Along the major axis of the artificial crack the u:-gradients are negative along the
B',S parts and positive along the remaining SL' parts of the axis, close to the tips of the
crack. This variation of the gradients of u:-displacements. which pass through zero values
at points S close to the small sides, were detected by the rear-face caustics presenting cusps,
when their respective initial curves lie inside the segment KS shown in Fig. 4(c).

(4) The method of rel1ected caustics was used in the present study to define the positions
of the virtual singular points at the corners of the artificial crack, the values of SIFs and
50s, which define accurately the stress field in the cracked plate. The definition of these
points was based on the obligation to have the initial curves and caustics to coincide with
the caustics derived from the exact solution.

(5) The exact forms of the caustics shown in Fig. 4 separated the loading amplitude
of the plate into three distinct zones. The first zone corresponds to cases of loading creating
initial curves ofa radius 'olb < 0.12 having their centres at the apices of the corners. In this
zone the measurement of the angular displacement of the caustic, and the ratio of the
maximum diameter of the caustic and the radius '0 of the initial curve (which for this zone
is a single circle) allow the evaluation of the respective SIF and SO. It was found that for
this zone the order of singularity tends to the value A. = 0.455.

(6) The second zone is defined by the circles contained in the interval
0.12 < 'olb:::;; 1.20. In this zone the initial have also their centre at the apices of the corners
of the crack. However, the two regions around each corner influence each other and the
angular displacements of the caustics are large not corresponding to the orders of singularity
defined by the ratios of the maximum diameters of the caustics and the respective radii of
the initial curves.

This intermediate zone, therefore. may be characterized as an unstable one for the
caustics yielding curves represented in Fig. 4(a) and (b).

(7) In the exterior zone. extending outside '0 = 1.2b, the respective caustics attain a
stable status, corresponding to the forms derived from natural cracks (see Fig. 4(c».

(8) By examining the initial curve in the third zone we may observe that this curve is
not a unique circle but it consists of two circular parts the centres of which appear in Fig. 4.

(9) If the stress field around the artificial crack is to be described only by the singular
term the positions of the centres of these circular parts of the initial curve. which lie inside
the rectangular hole, should be used as the origins of the coordinates for tracing the initial
curves and the caustics.

(10) The values of the stress singularities ). and of the SI Fs. normalized to the applied
stress p at infinity, are contained in Tables 2-4 for rectangular holes with m = 39.8. 72.9
and 00. The variation of the radii of the initial curves, normalized to the half crack length
a. are presented in Fig. 7 vs the overall constant, C·.

SAS 2~: )-8
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Fig. 10. The (11, +11,.)-sum stresses. normalized to the ellternal stress p. vs the .l:.!a coordinate of the
points of the first curve (Fig. 8). By (I) it is indicated the theoretical values. by (II) the values of
the sum corresponding to /\, 'f' = ,/(a/2) = O.603m- )/l and A. = 0.5 and by (III) the values of sum
corresponding to /\,/f' = 0.4208m - 1.4' and), = 0.57 (see Table 3). The centres k, of the respective

initial curves had coordinates xo,/h = 36.35 and )'o,/b = 0.25. respectively.

(II) It is possible from information taken from this curve to select the appropriate
experimental quantities for a given material and a given thickness of the plate and applied
load to the specimen so that for a given rectangular crack with defined dimensions to obtain
an accurate measurement in the desired neighbourhood of the crack by using only the
singular term of the solution.

(12) It is dear from the graphs already presented that the radii of the initial curves for
the natural crack and the respective artilicial crack are not equal for the cases when m « IX)

apart from a very small region around the crack tip and only for values of the constant C·
lying in the interval 0 < C· ~ 0.02. However, also in this region the values of the order of
singularities differ between them.

Up to now the method of caustics was also applied to artiticial cracks with side ratios
lying in the interval 40 ~ m ~ SO and the respective SIFs were evaluated based on the
singular solution. The values of C· given in the experiments were such that the error did
not exceed 5% (sec columns 13 in Tables 2-4). Thus, the value ofSIF for the natural crack
was deli ned by this procedure by assuming the order of singularity equal to A. = 1/2.

The values of the sum of the normal stresses along the longitudinal axis of the rec
tangular hole were plotted in Fig. \0 from the exact solution (curve I), the singular one
(curve II). and the solution derived by applying the method of the paper, which takes into
account the virtual centre of the initial curve as the origin of coordinates and the virtual
value of the order of singularity for determining the SI F from the respective caustic (curve
III). It is clear from these graphs that the values of the (11, + (J ,.)-sum of stresses presented
in curve III are very close to the exact solution (curve I) much better than the discrepancies
between curves I and II.

The experimentally obtained caustics shown in Fig. 8 corroborate the results derived
from the theoretical considerations. Figure 8(b) and (c) present caustics corresponding to
the second zone where ro ~ 1.211.

Figure 9 presents the caustics corresponding to the third zone for m :::: 40 and 73 and
C· = 0.2 and 0.1. respectively. In these cases the diameter of the caustic D~ax, represented
in Fig. 4(c), defines the value of the K,-factor. based on the singular solution. with an
accuracy equal to ± \%. However, if we evaluate the SIF with the virtual values of the
stress singularity given in Tables 2 and 3. respectively, and determining the D;max from Fig.
7. the value of the SI F presents the same accuracy with the previously stated value.

As a final conclusion it may be stated that the use of artificial cracks in experiments
for the study of natural cracks presents several and important discrepancies concerning the
stress and strain fields of the cracked plate for high levels of loading of the plate. Particularly
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dangerous is the use of artificial cracks in problems of dynamic fracture. where the artificial
crack always engenders crack kinks from the corners of the rectangle always avoiding a
crack nucleation along the artificial crack axis.

However, by using the method developed in this paper it is possible to circumvent
many of these difficulties and obtain a clear and correct picture of the stress field in the
cracked plate by using only a singular solution were the position of the stress singularity
and its order are exactly defined from the shape of the artificial crack and the characteristics
of the loading mode and the experimental arrangement of the experiment.
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