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Abstract—The problem of a rectangular hole in an infinite elastic and isotropic plate, submitted to
tension at infinity. is solved for any side ratio of the hole. It is assumed that the rectangular hole
has rounded-off corners, the radii of curvature of which remain many times smaller than the short
sides of the rectangles. The Muskhelishvili complex stress function ¢(2), sufficient to deternine the
first stress invariant needed for the solution is determined in a closed form by applying the conformal
mapping method of the outside of a rectangle to the inside of a unit circle. The stress and strain
distributions along the boundary of the hole, as well as inside a limited region in front of the short
sides of the rectangle are accurately determined. It is proved that the method of reflected caustics
is sensitive in examining the singular fields developed at the corners of the rectangles. Moreover,
the minimum radii of the initial curves of the caustics are determined, outside of which the stress
fields could be described by the singulur solution. Experiments with reflected caustics in plexiglas
plates corroborated the theoretical results.

INTRODUCTION

Scarching in the abundant literature refated to the experimental cvaluation of the stress
intensity factors at the tips of cracks and other kinds of singularities, based on the concept
of LEFM, onc may realize that a great deal of these experiments were executed in artificial
cracks, where the crack is modelled by a rectilinear slit sawn in the plate, and the only
precaution taken was that the flanks of the slit were not far away from each other. Then
the stationary crack was modelled as an orthogonal narrow slit {Theocaris, 1986a).

The main difference between an actual crack and an artificial one is that in a real crack
the flanks of the crack are only separated from each other by some kind of failure mechanism
(cleavage, slip deformation, etc.) and no material is missing between the flanks, so that if
the crack is submitted to a simple compression loading (without shear) the flanks close and
there is no stress concentration appearing at the crack tip. On the contrary, in an artificial
crack material is removed between the flunks of the slit and therefore the artificial crack
under compression presents stress concentrations at the tip, as well as along its flanks,

Early work on the influence of the blunt tips of a crack on the stress distribution at
the vicinity of the tip was carried out by Creager and Paris (1967). It was shown, among
others, that the stress distribution near the singular tip for blunt cracks is the same as the
stress field around a sharp crack, corrected by additional terms depending on the radius of
curvature of the blunt notch. It is interesting to note that the correction terms for the
normal stresses in a plane-stress problem are equal and of opposite sign, so that the first
stress invariant remains always independent from these correction terms.

Thus, while the continuum model of a crack is a plunar conglomeration of voids of
zero thickness and the corresponding mathematical model is a plane of discontinuity, the
representation of a real crack by a slit creates a third model, where the crack is represented
by a removal of a rather thick layer of material. These differences in the models are striking
and they are the main cause of large discrepancies in the results.

Another consequence of the difference between the modcls of a real and an artificial
crack concerns the singularities at the crack tips and their orders. Whereas. for a real crack
in an infinite elastic and isotropic plate, the order of singularity at the tip is 4 = 1/2, in the
artificial crack we have a pair of corners for each tip, which for simplicity may be assumed
as 90°. Corners create a doublet of singularitics for either corner, which, according to the
theory of multiwedges, are of an order depending on the angle (2n—¢) = 3n/2 and the
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Fig. 1. {a) A plate containing a rectangular hole of a certain side ratio m = a/b and an Oxy-frame
the origin of which is placed at the centre of the rectangle. (b) The transformed ¢-plane which maps
the perforated plate into the interior of the unit circle.

material properties of the plate (Theocaris, 1974). This difference in the arrangement of
singularitics at the tips is of primordial interest.

Another interesting paper concerned with the stress field near blunt cracks and its
influcnce on the fracture criterion of the material was presented by Kuang (1982). In this
paper the two-term solution for the near-tip stress ficld was extended to contain the influence
of the bluntness of the crack. The influence of the crack-tip radius was also studied on the
fracture criterion, based on the classical S-criterion for sharp cracks. Again, in this paper,
the differences in the sharp crack and the blunt crack models are considered and their
influence on the form and the magnitude of the near-tip stress ficlds indicated.

Blunting of the cracks was also extensively considered when plastic deformation begins
to be mstalled at the vicinity of the crack tip, when the blunting of the cruck becomes
conspicuous and its influence on the interaction between the crack tip and the cloud of
voids developed in the vicinity of the crack tip was encountered for studying fracture
processes by void nucleation, coualescence and interaction with the main crack (Theocaris,
1986h).

In this paper, the differences in the topography of the deformed clastic field around
the corners of a rectangular hole in a plate submitted to tension and the deformed area at
the vicinity of a mathematical model of a crack under simple tension were studied (Theocaris
and Pazis, 19813).

By using the method of reflected caustics, it may be observed that, for low levels of
loading, individual caustics were formed at cuch corner of the hole. As the loading increases
the two caustics of either corner of the rectangle interact and make the caustics interfere
and coalesce. As the load is further increased, a third mode of deformation may be attained,
where unique caustics are formed from cither pair of singularities at the corners of the
rectangle. These caustics are similar to the caustics derived from the mathematical model
of the erack.

The stress ficld around the rectangular hole was given by Savin (1961) for rounded-
off corners and different side ratios. Savin's solution used the Schwarz-Christot¥el trans-
formation to map the outside of the rectangular hole to the inside of the unit circle. The
transformed stress function, represented in a serics expansion, was truncated to a certain
number of terms, thus rounding the corners of the rectangle. In this paper the Muskhelishvili
stress function. used for the solution, was expanded to an infinite number of terms. in order
to assurc an acceptable curvature of the corners. Morcover, the side ratio was considered
as a variable, in order to form different artificial cracks with the appropriate side ratios.

THE CONFORMAL MAPPING FUNCTION

Let the z-plane in Fig. | represent the plate containing a rectangular hole, the side
ratio hja = m. and the origin of the Oxy-frame of which is placed at the centre of the
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rectangle. On the other hand, the J-plane represents the transform plane, where the per-
forated plate is mapped into the interior of the unit circle (p = 1). In the case of rectangular
holes in the plate with different side ratios approximate values for the conformal mapping
function © = w({) can be readily obtained from the Schwarz-Christoffel integral given by
Smirnov {1933)

s 3, -1 s 2 | 2y 1 2,1
w(C)=£(t~%‘«) (1“%) (1—5!3) (1—3—;) dr. M

Points a,. 4. &, and a, on the unit circle correspond to apices A, A;. A, and A, of the
rectangle and they have been conveniently selected, by defining the angle 8 = kn to satisfy
the obligation to yield the given side ratio for the rectangular hole. Then, it is valid that
(Savin, 1961)

-
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On the other hand, the real positive constants «; (/ = 1,4) indicating the fraction of =
corresponding to the exterior angles of the rectangle take the values
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Then, eqn (1) may be written as
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Equation (4) may be also written as
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where coeflicients f§, are given by
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Finally, the w({)-function may be approximated as
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where the factor Ry is a real factor characterizing the magnitude of the rectangle.
Equation (7) maps the rectangle with sharp corners to the unit circle if N o0, If a

finite number Ny is considered in the series expansion of egn (7)., the corners of the rectangle

beconmie rounded-off. They present a radius of curvature p. depending on N given by

(e
oy = e ®)

= '}."“_V o - -;\:"’Vll

where x.y are the coordinates of each corner of the rectangle in the complex plane
o = {x+1y). and they arc expressed by
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Table 1. The values of the constant Ry and the radii of curvature p_y. normalized to the small side b of the
rectangular hole with m = 5.3, 16.8. and 39.8, as well as the maximum values of the SIFs along the boundaries
of the holes

k=536 ajb ~ 5.23 k=336 ab = 168 k=236 ab=398

N  Rub  pwb  SCFy N Ryb  p.b  SCF, N Ryh puab  SCE,
4 17485 0064838  7.0330 4 49173 021812 82176 4 1L1931 0.59990  7.4531
S 17520 0.06456  7.1280 5 46105 0.10381 11.3227 5 10.0963 033863 10.0708
6 L7278 004499  B8.6666 6 47545 007213 13.2570 6 10.8237 021431 13.0865
7 17470 002900 10.5610 7 47050 006606 [3.4336 7103228 012829 163772
8 1.7406 002651 10.7750 8 46981 006559 13.5263 8 10.6389  0.09113  19.3401
9 17368 0.02513 11.1924 9 47321 005870 {45311 9 104508 0.07180 21.1086
10 17441 001900 12.8520 10 46913 004552 164742 10 10.5420 0.06713 21.5540
1017390 001533 140033 11 47265 00341 187931 11 105177 0.06663 21.4862

12 17397 001527 139842 12 47029 0.02826 20.3381 12 104974 006577 21703
13 17422 001377 {48214 13 47133 002698 20.6268 13 105431 0062001 225591
4 17391 001100 164067 14 47142 002696 206548 [4 104852 003430 241158
IS 17407 001015 168970 I35 4.7058 0.02531 21.3973 I3 105459 004590 262739

16 1.7412 0.01007 17.0071 16 47175 0.02186 23.0322 16 104909 003763 287350
N
x= RN{cos 0+ Y ¢, cos [(2n— 1)0]} (9)
n=1
N
y= R,\,{—sin 1+ Z ¢, sin [(2n— l)()}}. (10)
a1

Here the primes and double primes denote differentiation with respect to the angle ¢ for
values of 0 = &n.

If it is desired that all the rectangles for different values of N maintain the same small
side b, the real constant Ry may take the values

b l
Ry = R

., RN (1)
- 1+ Z (... I)N('n
n-

The valucs of constant Ry and of the radii of curvature p.y normalized to the small
side, b, of the rectangle are given in Table | for purametric values of k and therefore of the
side ratio a/h.

Three different rectangles were examined with side ratios 4 = 5.23, 16.8 and 39.7 with
k = 5/36, 3/36 and 2/36. It may be observed that the greater the number of terms, N, in
eqn (7) the smaller arc the values of the radii of curvature of the corners of the rectangles
PN /b, normalized to the side A, whereas the ratio R/h remains almost constant.

Since the finest cutter for sawing an artificial slit could have a thickness of the order
of d = 0.0003 m, then the lengths of the crack for the above examined three cases are
respectively @ = 0.0016, 0.005 and 0.015 m, which, especially the third one, are suitable for
initial cracks in the fracture mechanics tests. On the other hand, the radii of curvature at
the corners take values varying between p /b = 0.3 and 0.03.

EVALUATION OF THE STRESS CONCENTRATION FACTORS AT THE CORNERS
For an infinite plate submitted to a tensile stress. p, at infinity, paraliel to the Qy-axis,

passing through the origin O lying at the centre of the rectangular hole, the complex
potential function ¢(z) is given by (Muskhclishvili, 1953)

o(z) = ,;: +p*(2). (12)

The function ¢(z) in the mapped {-planc is expressed by
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#(0) =211+ 00(0) (13
where @4(() is a function expressed by
o) = Y &l =Y {Ree+ilme}l (14)
r=1 r=1

where ¢,’s are complex constants.
The boundary conditions for the basic stress field are given by

£2+if2 = = Llo() ~e= o) (19

where exponent x denotes the angle subtended by the external loading axis and the Ox-axis
of the rectangle, and ¢ represents the points along the boundaries of the hole and of the
circumference of the unit circle in the mapped plane .

For the determination of the unknown ¢,-function use was made of the integral
equation given by Savin (1961)

DL G0 e = o d (16)

PO+ il oo P @D = ©=0

J"’(”) )] da A +'fz
2mi

where now { is a point inside the unit circle y. The integral on the left-hand side of eqn (16)
may be approximated to

J‘ ( ) 0' N P R l )CN n~-2
eod) + 5 @ @4(a )( "; ’Z: rP(n)(Re g, —i Im ¢,

+ Z (Re g, +iImg)" (17)

where the P(n) are given by the recurrence formula
P(n) = cy ner— P, 2= 1)=1]=--- = P(n—1)c,

with P(l) = —cy.
On the other hand, the integral on the right-hand side of eqn (16) is approximately
expressed by

;f___+_lL do = — Rgﬁ{ Z e, L h -—ezi‘C}. (18)

‘)7“ v (0' Q) - ne |

Comparing now the coefficients of the corresponding real and imaginary parts in the
respective terms of power of { in eqns (17) and (18), we obtain a system of 22N—-1)
equations which when solved yields the values of the real and imaginary parts of ¢,.

If relations (7) and (14) are introduced into relation (13) they yield the following
expression for the ¢,({)-function:
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Fig. 2. The distribulion of the stress concentration factor along the boundaries of the rectangular
hole in a plate submitted to simple tension at infinity.
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Since along the boundary of the rectangular hole the normal to the boundary com-
ponent of the normal stresses is zero, it remains from the first stress invariant only the 0,
component, parallel to the boundary of the hole. Then, it is valid that (Smirnov, 1933)

o, =4 Re ["3,-(‘,)}. (20)

w’(§)

This value for o, becomes equal to infinity for w'({) = 0, that is, at the sharp corners of
the rectangular holes. For rounded-off apices of the hole the o,-stress becomes a maximum
without tending to infinity. This maximum value, normalized to the applied tensile stress
at infinity, p, yields the stress concentration factor at the respective corner. The SCF is
given by

vog ke
SCF, = [‘/L_(‘,:J ] Qn

'y (™)

Figure 2 presents the distribution of the stress concentration factors along the bound-
aries of the rectangular hole in a plate submitted to simple tension at infinity, normal to
the long side of the rectangle. The rectangular hole corresponds to &£ = 5/36 and it was
taken as N = 4. [t may be observed from the SCF-distribution that the small side, b, of the
rectangle is under tension with maximum stress concentrations at corners A, and A,, as
expected, and minima at the mid-length B, of the short side A A, of the rectangle. On the
contrary, the SCFs along the long side diminish rapidly from their values A, A} and A, A}
at the corners, they pass through zcro at points C; and C,, and they become negative
indicating a compressive state of stress along the long sides. Again, the minimum com-
pressive SCF appears at the middie points M; and M, of the long sides, but this minimum
is smooth, since along the greater part of the long side the SCF varies only very little.

It is worthwhile to evaluate the u -displacement along the thickness of the plate. For
plane-stress conditions in the plate the u.-displacement is given by
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Fig. 3. The shape of the deformed lateral upper face of the plate at the vicinity of the short side of
the rectangular artificial crack, as plotted by computer.

. = — 2WI Re (PN({) (22)
i E wy()
where d is the thickness of the plate, v and E arc Poisson’s ratio and the elastic modulus of
the material of the plate and Re indicates the real part of the ratio of functions ¢y ({) and
wy({) in the {-planc.

In Figs 2 and 3 the quantitics plotted by computer were presented in an axonometric
projection, in order to show the variation of these quantities in space along the boundaries
of the rectangular crack, which is inclined to a 60°-projection.

Figure 3 presents the shape of the deformed surface of the upper face of the plate at
the vicinity of the short side of the rectangular crack, as plotted by computer. Corners A,
and A, present very abrupt craters, due to the singular stresses there. The depths A A and
A;Aj corresponding to the craters at the corners represent the maximum submersions of
the lateral faces of the plate. On the other hand, the submerged middle point B, of the short
side of the rectangle goes to B}, which corresponds to the point of minimum submersion
of the boundaries of the rectangular crack.

The deformed lateral fuce of the plate then takes the form of a saddle at the vicinity
of the short side of the rectangular crack. The lateral deformed O.x-axis between points B,
and L, goes to the BiLj-curve, which presents a relative minimum inside the plate at point
S, which really corresponds to the bottom of the ridge of the saddle-like surface of the plate
at the vicinity of the rectangular crack.

THE REFLECTED CAUSTICS FROM THE CORNERS OF THE RECTANGULAR CRACK

It has been shown (Theocaris, 1981) that for an elastic plane-stress field only the one
Muskhelishvili complex potential, ¢(z), suffices to express the generatrix curve of the
caustic, formed when the rays of a light beam are reflected from the close vicinity of the
singular zones of the stress field. This curve is given by
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[Co™ () = 1. (23)
This generatrix curve, called the initial curre, forms in space a caustic surface, the

intersection of which with a reference plane, placed at a distance -, from the stress field, is
a caustic curve expressed by

W= i,z+Co'(2)). (24)
In these relations C is an overall constant containing the mechanical and optical properties

of the plate and the characteristic dimensions of the optical arrangement and 4, is the
magnification factor of the optical set-up. given by

_ t., _._._: (25)

where z; is the distance between the focus of the light source and the specimen.
The function ¢(z), the first and sccond derivatives of which enter into the expressions
for the caustic and its initial curve, is given by

A
H() = o)
Then, these derivatives are expressed by
D)
Y= 00
N T VR 3
P = o {4) =) w'(:)}‘ (26)

In these relations ¢'(0) and ¢”({) arc the first and second derivatives of the complex potential
().

The constant C is expressed by

4z,dc,

C = 7)

/'m

where the only unknown is the optical constant for the material of the plate, which for
reflections from the rear fuce (¢,) must be measured by interferometry, whereas for reflec-
tions from the front face takes the value ¢, = v/E. Finally, = is the complex distance in the
plane of the plate (z = x+iy) and W expresses the vector of deviation of the light rays on
the plane of reference, where the caustic is formed.

Relation ¢”(z) in eqns (26) may be written in the form

) = 2 ) 28)

’o

<

where f({) is a polynomial function of ¢, which does not present singular points. This is
due to the fact that the w’({)-function is different than zero all over the plate since the
orthogonal hole has rounded-off corners in this plane. The constant coefficients of the
polynomial depend on the ratio m of the sides of the hole and the desired curvature at its
apices.

The ¢”(z)-function is also proportional to the applied stress p at infinity of the plate
and inversely proportional to the square of the major axis of the hole, which is expressed
by the quantity Ry.
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Fig. 4. The initial curves and the caustics of an infinite thin plate containing rectangudur internal

holes with rounded-off corners for m = 5.3 having radit of curvitures g, = 0.8195 {{a) and (b))

and p. = 0.064 (¢}, while {d) corresponds to a hole with ar = 398 and with respective it
£o0 = 0.0675,

The equation for the initial curve (eqn (23)) may be written as
[C* (Ol =1 (29

where
i
LA L
C CR§

The overall constant C* is a non-dimensional quantity and it contains the characteristic
quantities of the optical sctup z, and Ay, the stress optic coefficient ¢,, the thickness d of
the plate which must assure plane-stress conditions, the applied stress p at infinity and the
ratio m.

The solution of eqns {29) and (24} is achieved numerically by a convenient computer
program. Figure 4 presents the initial curves and the reflected caustics of an infinite thin
plate containing rectangular internal holes with rounded-off corners for m = 3.3, having
radii of curvature p.e = 0.0196 (Fig. 4(a)}, as well as for m = 39.8 and respective radii
Pao = 0.0676 (Fig. 4(d)). The index 10 in the radii of curvature means that these radii
correspond to values derived from 10 terms in the series approximations of the ¢(z)
function.

Figure 4(b) for C* = 0.07 yields initial curves separated from each other for each
corner of the hole. This means in such radii the craters at each corner are independent of each
other and in these radii of initial curves the u_-displacement contour lines are independent of
each other. Moreover, the initial curves for these corners may be approximated to a high
degree of accuracy as circles with centres the points k; and k, coinciding with the virtual
singular points of the plate (Theocaris and Petrou, 1986).
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Fig. 5. The evolution of the position of the centre k, of one circular branch (AB) of the initial curve
for rectangular holes with side ratios m = 1.0, 11.8, 39.8 and 72.9, respectively.

The internal caustics at each corner present cusps derived from the reflections of light
rays from the local minimum points of the w_-displacement craters along each initial curve.
The vector W defining the caustic is normal to the tangent of the initial curve at these local
minima, whereas for the external branches of caustics these points yield local maxima in
the respective caustics.

For increasing values of C* attaining a value C* = 0.09, which is achieved by changing
the arrangement of the optical sct-up without changing the loading conditions of the plate,
the initial curves at the respective corners of the minor side of the rectangle evolute to a
unified curve shown in Fig. 4(c). This curve is formed from scgments AB and CD which
are to a good approximation parts of circumferences with centres k; and k., connected by
the adaptation curve BEC. The AB and CD circular segments lic inside either crater whereas
the BEC scgment traverses the hill formed between the two craters of the corners.

Morcover, the caustics for C* = 0.09 also are unified, presenting an internal caustic
with two cusp points and the external caustic with one smooth cusp zone. The cusp points
of the internal caustic are derived from points B and C of the initial curves lying inside the
craters of the w.-displacements of cither corner, whereas the cusp zone of the external caustic
originates at point E of the intersection of the transverse axis of the hole and the initial
curve for the rear fuce, the point which corresponds to a local minimum.

The vector W = W = 0 when the initial curves pass through point S of the longi-
tudinal axis of the rectangular hole (Fig. 3). When point E lies on the BS segment then
the internal and the external caustics cross cach other, whereas when point E lies on the SL
segment the respective caustic lic on both sides of the initial curve, separated from each
other.

For values of C* higher than the above value the initial curves envelop both craters
without penetrating in either of them. Figure 4(d) shows such a case of initial curves formed
in a rectangular hole having a side ratio m = a/b = 39.8 and an overall constant C* taking
the value 0.07. In this case also each initial curve is formed, to a good approximation, by
the circular segments AB and CD with centres k, and k,, respectively, joined together by
the adaptation curve BEC. In this case, however, only the internal caustic presents a unique
cusp point, which is generated by point E of the initial curve. This point is a local minimum
of the u.-displacements when this curve lies outside both craters of the corners (Fig. 3).
This caustic resembles the caustic corresponding to a mathematical crack disposing a single
crater.

Figure 5 shows the evolution of the positions of the centre k, of the one circular sector
AB of the initial curve for rectangular holes with side ratios m = 1.0, 16.7, 39.8 and 72.9.
One may observe in this figure that these centres, when the respective initial curves lie inside
the crack craters, have an almost stationary position near the rounded-off corners of the
hole. When the initial curves are partly getting out of the craters, these centres move towards
the centre of symmetry of the hole.
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Fig. 6. The values of the yy,- and xy-coordinates of the centres k, of the initial curves, vs the values
of overall constant C*, lying inside the interval 0 < C* < 0.1

For the case of a square hole with m = 1.0 point k, is stationary for C* € 1.0 and then
follows a parabolic path tending towards the centre of the square. In this case the respective
centres k, are equally attracted from all corners of the square and they tend symmetrically
to the centre of the hole.

For m = 39.8, for a curvature radius of the rounded-off corners equal to p,y, = 0.067b
and for values of C* < 0.03 the centres of the initial curves remain stationary. For values
of C* > 0.03 these centres move rapidly, almost normally, at a distance equal to 0.15 from
the minor side of the hole and then move toward the centre of the rectangle. A similar
movement presents the points k, for the hole with m = 72.9, whereas for m = 11.8 points
k, follow an almost straight line inclined to 45° to the sides of the rectangular hole for
values of C* > 0.3.

In Fig. 6 the values of the y,, and xg coordinates of the centres k, are presented vs the
values of the overall constant C* lying inside the interval 0 < C* £ 0.1, This interval is the
most important, because for such ratios of m and loading steps C*, the rectangular holes
assimilating artificial cracks are normally tested in the experiments.

THE COMPLEX POTENTIAL FUNCTION ¢(z) = K/2(2zy

Let us assume a stress field which is described by the complex potential (Theocaris,
1975)

K
() = 3627 (30)

where X represents the complex SIF and 4 is the respective order of singularity in this field.
The initial curve of this field is given from relation (23) and it is expressed by

A+ DCIKN/2% N2 = 1. (3hH

We may observe that the initial curve is a circle of radius r, given by (Theocaris and
Prassianakis, 1980)

ACEZV P

2+ 1)

rqg =

(32)

with its centre lying at the point 2 = 0.
The respective caustic is given in parametric form as follows {10]:
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.. € ,
Y= /.mrul:cos ©+ (7;_—” cos ((! +/.)—w)]
Y = ).mr',[sin o+ (‘;i-l) sin (g(1 +}.)—u;)} (33)

The quantities ry and ¢ express in polar coordinates the points of the initial curves and
€ is given by & = sign ¢/|¢| taking the value & = 1 for reflections from the rear face and

¢ = — 1 for reflections from the front face of the cracked plate. Angle @ is expressed by
K,
w = tan~! (W = tan~! ( ,“> 34)
K
or

K= (Ki—iKy) = |K

exp (—iw).

By rotating the reference frame, k,x,y, in Fig. 4(b), by an angle 6 = w/4 in the new
position k,x"1", as it has been done by Williams (1957), the parametric equations of the
caustics are simplificd as follows

£
X' = Anre| €os @+ = — - cos (1 +A)p’
n|: p (+4 ( )‘P:I

Y = ).,,,r‘,[sin o+ - * sin (I +).)<p’:|. (35)

(1+4)

Equations (35) represent the caustic of Fig. 4(b) which is referred to the frame k,x’')”
with an axis of synunetry the kx’-axis. The maximum transverse diameter of this caustic
D = 2Y o is parallel to the kyp7-axis and it is given by (Theocaris and Petrou, 1987)

, . . n l . on(l+4)
DI = i rg] Sin oo o oo g N E 6
t 0[:5 (2+/.) (l Iy sin (2+/.) } (3 )
Furthermore, in the k,x"y’ system of axes it is valid that | K| = |K¥| and therefore
1+ A)
k(24 4) . 3
K; ry i +4)C (37)

By studying the caustics formed by initial curves lying inside the craters of each
rounded-olf corner of the rectangular hole we observe that the angle, o (see Fig. 4(a), (b)),
of rotation of the caustic remains almost constant for radii of the initial curves satisfying
the condition ry € 0.12h. For values ry > 0,125 the angle of rotation of the caustic increases
rapidly in the arca of values of r, tending to yield a unified caustic, enveloping the minor
side of the rectangle. Subsequently the two cusps of the internal caustic approach each
other and they are displaced in the interior of the hole, whercas the unique cusp of the
external caustic recedes from the hole.

For values ry > 1.206 the two cusps of the internal caustic coalesce, whereas the cusp
of the external caustic disappears. The final form of the caustics for high values of C* and
therefore for increased steps of the loading of the plate is presented in Fig. 4(d) and
resembles the caustics of Griffith cracks.

Therefore, according to the previously established evidence, the evaluation of SIF and
of the SO according to the theory developed in this paper, may be carried out with accuracy
only in the regions where r, < 0.12b or ry 2 1.205.
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Indeed, in the region where r, < 0.12b it may be evaluated from the angle 4 of rotation
of the caustic as well as from the ratio of the diameter of the caustic and the radius of its
initial curve that the order of singularity tends to the value i = 0.455, which is given by
Williams (1957) for a notch of an angle ¢ = n/2.

The SO for the caustic of Fig. 4(a) is evaluated (Theocaris. 1975) as 4 ~ 0.47. The
determination of K; and K|; may then be readily carried out by using relations (37) and
(34). The region of validity of these values is rather small and without practical meaning
for artificial cracks of the experiments. On the contrary, great interest presents the region
ro > 1.205 for the evaluation of K;. since in this region an overall SIF may be evaluated
from the unified caustic, which is a mode-I SIF since the rotation of the caustic is annuled.

Tables 24 contain the values of SIFs and SOs describing the stress field around the
centre k, of the initial curves. This region is extended to the longitudinal axis of symmetry
of the cracked plate. whereas the other half is symmetric to this one. In the same tables the
coordinates of the centres k; of the initial curves in columns 3 and 4 (see also Fig. 1) are
given, as well as the values of 4 and K,/p in columns 10 and I1.

The values of K, as they have been derived from the diameter D™ of the caustic
assuming as 4 = 1/2 are given in column 12, whereas the discrepancies between these values
and the theoretical ones based on the relation K, = ¢,/ for a natural crack are included
in column 13.

While Table 2 contains the case of a rectangular hole with m = 39.8, Table 3 cor-
responds to m = 72.9 and Table 4 to the Griftith crack. The selected values of m’s are those
which are frequently met in artificial cracks of experiments.

Figure 7 gives the values of the radii of the initial curves normalized to the half-crack
length vs the overall constant C*. One may observe that the values of ry/a for C* < 0.025
coincide with the respective values of the Griflith crack, whereas the rectangular hole with
m = 39.8 does not present a caustic of the form of Fig. 4(c) in this region.

It is worthwhile noting that almost all of the experimental cracks, when they are
artificial, lic in the zone 40 € m € 70 and the experimental sct-up, the crack length, the
thickness of the specimens and the external loading are such that they yicld values for K
which differ between them only by 5%. Morcover, in the applications of caustic nobody
cvaluates the radius of the initial crack, but calculates directly, from the diameter of the
caustic the respective value of SIF.

In order to check the stress ficld near the corners of the rectangular hole, as it is derived
from the proposed method evaluating K and A, the values of the sum of the principal
stresses were checked with the values derived from the theoretical solution giving K, = p,/a
and 1 = 1/2. This sum was calculated according to the two methods along the long axis of
symmetry of the rectangular hole (see Fig. 10).

While the traces marked as I represent the theorctical values, traces 11 correspond to
Ki/p = (0.929/2) "% = 0.603 %2, i = 0.50 with origin the point (xu/b = 36.35, yu /b = 0),
and traces I to values of the sum corresponding to Ki/p = 0.4208 and A = 0.57 with a
centre having coordinates xy /b = 36.35 and yy /b = 0.25. It is clear from these curves
that an improvement of the values of the sum of normal stresses relative to the theoretical
values as defined by the method of this paper is achieved when these values arc compared
with the respective curves corresponding to the singular solution.

EXPERIMENTAL EVIDENCE

A scrics of tests was undertaken for the study of the caustics appearing at the corners
of artificial cracks cxisting inside infinitc plates submitted to simple tension at infinity. For
this purposc three series of specimens made of PMMA were used. The dimensions of the
specimens were : width w = 0.10 m, length outside the jaws / = 0.20 m, thickness ¢ = 0.003
m. In all these specimens internal slits parallel to the short edges of the plates and at their
mid points between jaws were cut with a very fine saw of thickness ¢+ = 0.0003 m. The ratio
of the sides of the rectangular holes m = a/b were taken equal to 5.3, 40 and 73. whereas
the lengths of the artificial cracks were respectively 0.025, 0.012 and 0.021 m. Finally, the
angles at the corners of the rectangles were rounded off with curvature radii approximately



Table 2. The values of SIFs and SOs describing the stress field around the centres k, of the initial curves of a rectangular hole with m = 39.8. The
coordinates of the centres k, of the initial curves are given in columns 3 and 4. The values of K as they have been derived from the diameter
D™ of the caustic assuming 2 = 172 (column 12), and the discrepancies between these values and the theoretical ones, based on the relation

K, = p/(a-2) for the natural crack (column 13)

I 2 3 4 5 6 7 8 9 10 It 12 13
K\/p Percentage

Kip m-¥? error

ala C* X /b Ya/b ryib 2r,’a D™vb D™Yb D™, i '~ wheni=} (%)
| 0.03 19.87 0.48 1.55 0.078 5.88 4.92 3.174 0.495 0.349 0.530 16
2 0.05 19.85 042 2.00 0.100 7.05 6.21 3.105 0.550 0.291 0.500 11
3 0.07 19.84 0.38 2335 0.117 7.96 7.20 3.083 0.570 0.273 0.484 8
4 0.09 19.84 0.36 2.61 0.131 8.73 8.01 3.068 0.580 0.268 0.474 6

5 0.10 19.84 0.34 2.745 0.137 9.08 8.40 3.060 0.585 0.274 0.471 5.5

6 0.20 19.82 0.28 3.70 0.186 11.72 11.16 3016 0.620 0.244 0.446 0.0

7 0.30 19.79 0.24 4.385 0.220 13.60 13.12 2992 0.635 0.237 0.431 —-3.5
8 0.40 19.76 0.23 4.935 0.247 15.12 14.66 2970 0.655 0.221 0.422 -6

aib=m=13983; R, =0.1054 m.

Table 3. The values of SIFs and SOs describing the stress field around the centres k, of the initial curves of a rectangular hole with m = 73. The
coordinates of the centres k, of the initial curves are given in columns 3 and 4

1 2 3 4 5 6 7 8 9 10 11 {2 13
Ki/p Percentage
K,/p m~¥? error

ala ct Xa /b Ya/b roib 2ryia DPib DP h D™ r, i m*~?  wheni=! (%)

1 0.005 36.38 0.49 1.32 0.036 5.26 4.28 3.242 0.45 0.586 0.753 20

2 0.0075 36.35 0.43 .65 0.045 6.050 5.19 3.145 0.52 0.438 0.712 15

3 0.0¢1 36.35 0.38 1.98 0.054 6.96 6.20 3.131 0.53 0.447 0.689 12

4 0.020 36.34 0.30 2.61 0.072 8.68 8.08 3.095 0.55 0.443 0.658 8

S 0.030 36.34 0.27 3.10 0.085 10.04 9.50 3.065 0.58 0.392 0.631 4.5

6 0.040 36.34 0.25 3.485 0.096 11.24 10.74 3.081 0.57 0.418 0.627 4

7 0.050 36.35 0.25 3.81 0.105 12.24 11.74 3.081 0.57 0.421 0.622 k]

8 0.075 36.34 0.23 4.50 0.123 14.25 13.79 3.065 0.58 0.410 0.606 0.5

9 0.100 36.35 0.22 5.055 0.139 15.90 15.46 3.060 0.58 0411 0.598 —-0.01

ath =m=7292, R, =0.18853 m.
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Table 4. The values of SIFs and SOs describing the stress field around the centres k, of the initial curves of a Griffith crack. The coordinates of the centres
k, of the initial curves are given in columns 3 and 4

1 2 3 4 5 6 7 8 9 10 it 12 {3
Ki/p Percentage

Klp m=¥? error

ala C* Xoal(@f2)  yafa  relb 2gfax10 DMax 10 D™ ax 10 & = D{™r, i m-?  withi=1} (%)
| 0.01 0.9997 — e 0.5352 1.6794 1.6794 3.138 0.525 0.2643 3.308 2.5
2 0.03 0.9993 — e 0.8305 2.586¢ 2.5861 3.113 0.542 0.2388 0.3022 44
3 0.05 0.9989 — —— 1.0190 3.1656 3.1656 3.106 0.547 0.2334 0.3006 49
4 0.067 0.9985 — — 1.1657 3.6104 3.6104 3.097 0.554 0.2248 0.2983 5.6
5 0.09 0.9982 — — 1.2888 39790 3.9790 3.087 0.562 0.2150 0.2959 6.4
6 0.10 0.9980 —_ — 1.3448 4.1488 4,1488 3.085 0.564 0.2194 0.2956 6.5
7 0.50 0.9917 — e 2.5600 7.6850 7.6850 2.002 0.630 0.1570 0.2760 12.7
8 1.00 0.9890 — e 3.4000 9.9448 9.9448 2.920 0.693 0.1222 0.2696 14.8

alb=m=ox; R, =01054 m.
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Fig. 7. The values of the radii of initial curves, normalized to the half crack length, vs the overall
constant C* for the rectangular holes with m = 39.8. 72.9 and x.

equal to 0.065h for each type of crack. The shapes of the cracks are given in Figs 8(a) and
9(a). respectively.

It was evaluated for such dimensions of the artificial cracks that the number of terms
N should be 4, as this can be derived from Table 1. Indeed, we can achieve a very good
approximation in the series expansion of ¢(z) for N = 4 and m = 5.3 yielding a radius of
curvature Ry = 0.0087 m. For the specimens with m = 40 it is nccessary to consider 10
terms and obtain a radius Ry, = 0.0032 m, whereas for the specimens with m = 73 the
radius R, becomes R, = 0.0054 m. We may obscrve that the radii R for all these cases
tend to be cqual to one quarter of the length of the artificial crack.

The optical arrangement for applying the method of caustics is a typical one described
previously (Theocaris, 1981). The optical constants of the material used in the tests were
evaluated tobe ¢, = ~3.34x 10 '"m* N 'and ¢, = 1.Ox 10 '*m* N ', Figures 8(b) and
(¢) present the caustics for the specimen with m = 5.3 for C* = 0.065 (Fig. 8(b)) and 0.135
(Fig. 8(c)).

We may obscrve that for C* = 0.065 we dispose two caustics for either corner of the
artificial crack, whercas for C* = 0.135 we obtain only a unified caustic for both corners
of the minor side of the rectangle for reflections from the rear faces of the specimens.

This caustic presents a single cusp point. It is clear that this experimental evidence
corroborates the findings of the theory concerning the shape and size of the caustics.

Figure 9(a) presents the unloaded perforated plates for m = 40 and 73, respectively,
in a magnification corresponding to 4, = 15.0. Figures 9(b) and (c) show the experimental
and the theoretical caustics when C* takes the values 0.2 and 0.1, respectively. Again a
satisfactory coincidence appears between the theoretical and experimental caustics.

The values of D™*/a derived from the experiments and the theory present a deviation
of 1.5% for m = 40 and 1.0% for m = 73, The error in the experimental evaluation of K|
depends on the error of estimating the size of the maximum transverse diameter D™ of
the caustic raised to a power equal to the exponent of this diameter appearing in the
respective relationship. This error was estimated to be of the order of 3% which explains
the existing discrepancies between theory and experiments.

RESULTS AND DISCUSSION

Most experimenters have recourse to artificial cracks for the study of the stress fields
in cracked plates instead of natural cracks. This is done because the preparation of a natural
rectilinear crack is difficult to achieve satisfactorily, especially when a particular orientation
of the crack axis is obligatory. However, the artificial crack is always a rectangular hole
with a defined ratio m = a/b between the sides of the rectangle. Moreover, the corners of
this hole never achieve an infinite curvature. Since the rectangular hole representing the
artificial crack is always with rounded-off corners it can be studied analytically by mapping
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its shape inside the unit circle, using the Schwarz-Christoffel conformal mapping
method, and defining the corresponding complex stress function ¢({) according to the
theory of Muskhelishvili.

Comparing the tangential components of stress along the boundaries of the rectangular
hole of Fig. 2, as well as the u.-displacements along these boundaries, shown in Fig. 3, we
make the following remarks.

(1) The singular points corresponding to either tip of the crack. which are unique for
the natural cracks, are doubled.

(2) The whole boundary of the natural crack presents positive u -displacements except
at the crack tips where each undeformed tip is split into two points one of which goes to
minus infinity and represents the bottom of the crater formed around the crack tip, while
the other is raised to the same height as the boundaries of the crack constituting the
extremity of the ridge formed by the lips of the crack (see Fig. 2 in Theocaris and Petrou
(1987)).

On the contrary, the minor sides of the artificial crack C,AA,C, in Fig. 2 are under
negative u.-displacements, whereas the major sides M,C, and M,C, are under positive u.-
displacements. Moreover, the unrealistic phenomenon of the double displacement of the
crack tip, due to the influence of singularity there, disappears.

(3) Along the major axis of the artificial crack the w.-gradients are negative along the
B’ S parts and positive along the remaining SL’ parts of the axis, close to the tips of the
crack. This variation of the gradients of u_-displacements, which pass through zero values
at points S close to the small sides, were detected by the rear-face caustics presenting cusps,
when their respective initial curves lic inside the segment KS shown in Fig. 4(c).

(4) The method of reflected caustics was used in the present study to define the positions
of the virtual singular points at the corners of the artificial crack, the values of SIFs and
SOs, which define accurately the stress field in the cracked plate. The definition of these
points was based on the obligation to have the initial curves and caustics to coincide with
the caustics derived from the exact solution.

(5) The exact forms of the caustics shown in Fig. 4 scparated the loading amplitude
of the plate into three distinct zones. The first zone corresponds to cases of loading creating
initial curves of a radius r/b < 0.12 having their centres at the apices of the corners. In this
zone the measurement of the angular displacement of the caustic, and the ratio of the
maximum diameter of the caustic and the radius r, of the initial curve (which for this zone
is a single circle) allow the evaluation of the respective SIF and SO. It was found that for
this zone the order of singularity tends to the value 4 = 0.455.

(6) The second zone is defined by the circles contained in the interval
0.12 < ry/b < 1.20. In this zone the initial have also their centre at the apices of the corners
of the crack. However, the two regions around cach corner influence each other and the
angular displacements of the caustics are large not corresponding to the orders of singularity
defined by the ratios of the maximum diameters of the caustics and the respective radii of
the initial curves.

This intermediate zone, therefore, may be characterized as an unstable one for the
caustics yielding curves represented in Fig. 4(a) and (b).

(7) In the exterior zone, extending outside r, = 1.25, the respective caustics attain a
stable status, corresponding to the forms derived from natural cracks (see Fig. 4(c)).

(8) By examining the initial curve in the third zone we may observe that this curve is
not a uniquc circle but it consists of two circular parts the centres of which appear in Fig. 4.

(9) If the stress ficld around the artificial crack is to be described only by the singular
term the positions of the centres of these circular parts of the initial curve, which lie inside
the rectangular hole, should be used as the origins of the coordinates for tracing the initial
curves and the caustics.

(10) The values of the stress singularities 4 and of the SIFs, normalized to the applied
stress p at infinity, are contained in Tables 2-4 for rectangular holes with m = 39.8, 72.9
and cc. The variation of the radii of the initial curves, normalized to the half crack length
a, are presented in Fig. 7 vs the overall constant, C*.

SAS 25:3-8
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Fig. 10. The (g, +0,)-sum stresses, normalized to the external stress p, vs the x,/a coordinate of the

points of the first curve (Fig. 8). By (1) it is indicated the theoretical values. by (I1) the values of

the sum corresponding to A, 'p = /(a/2) = 0.603m~"? and i = 0.5 and by (I11) the values of sum

corresponding to K,/p = 0.4208m "' and 1 = 0.57 (sce Table 3). The centres k, of the respective
initial curves had coordinates v, /b = 36.35 and y, /b = 0.25, respectively.

(11) Tt is possible from information taken from this curve to select the appropriate
experimental quantities for a given material and a given thickness of the plate and applied
load to the specimen so that for a given rectangular crack with defined dimensions to obtain
an accurate measurement in the desired neighbourhood of the crack by using only the
singular term of the solution.

(12) Ttis clear from the graphs alrcady presented that the radit of the initial curves for
the natural crack and the respective artificial crack are not equal for the cases when m « o
apart from a very small region around the crack tip and only for values of the constant C*
lying in the interval 0 < C* < 0.02. However, also in this region the values of the order of
singularitics differ between them.

Up to now the method of caustics was also applied to artificial cracks with side ratios
lying in the interval 40 < m < 80 and the respective SIFs were evaluated based on the
singular solution. The values of C* given in the experiments were such that the error did
not exceed 5% (see columns 13 in Tables 2-4). Thus, the value of SIF tor the natural crack
waus defined by this procedure by assuming the order of singularity equal to 4 = 1/2.

The values of the sum of the normal stresses along the longitudinal axis of the rec-
tangular hole were plotted in Fig. 10 from the exact solution (curve [), the singular one
(curve H), and the solution derived by applying the method of the paper, which takes into
account the virtual centre of the initial curve as the origin of coordinates and the virtual
value of the order of singularity for determining the STF from the respective caustic (curve
1), It is clear from these graphs that the values of the (o, +0,)-sum of stresses presented
in curve I are very close to the exact solution (curve [) much better than the discrepancies
between curves Tand 1L

The experimentally obtained caustics shown in Fig. 8 corroborate the results derived
from the theoretical considerations. Figure 8(b) and (¢) present caustics corresponding to
the sccond zone where ry < 1.26.

Figure 9 presents the caustics corresponding to the third zone for m >~ 40 and 73 and
C* = 0.2 and 0.1, respectively. In these cases the diameter of the caustic D™, represented
in Fig. 4(c), defines the value of the Ki-factor, based on the singular solution, with an
accuracy equal to +1%. However, if we evaluate the SIF with the virtual values of the
stress singularity given in Tables 2 and 3, respectively, and determining the D/™* from Fig.
7. the value of the SIF presents the same accuracy with the previously stated value.

As a final conclusion it may be stated that the use of artificial cracks in experiments
for the study of natural cracks presents several and important discrepancies concerning the
stress and strain fields of the cracked plate for high levels of loading of the plate. Particularly
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dangerous is the use of artificial cracks in problems of dynamic fracture, where the artificial
crack always engenders crack kinks from the corners of the rectangle always avoiding a
crack nucleation along the artificial crack axis.

However, by using the method developed in this paper it is possible to circumvent
many of these difficulties and obtain a clear and correct picture of the stress field in the
cracked plate by using only a singular solution were the position of the stress singularity
and its order are exactly defined from the shape of the artificial crack and the characteristics
of the loading mode and the experimental arrangement of the experiment.
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